Experimental Characterization of the Anatomical Structures of the Lumbar Spine Under Dynamic Sagittal Bending.

Biomedical sciences instrumentation(2015)

引用 23|浏览3
暂无评分
摘要
Underbody blast (UBB) events transmit high-rate vertical loads through the seated occupant’s lumbar spine and have a high probability of inducing severe injury. While previous studies have characterized the lumbar spine under quasi-static loading, additional work should focus on the complex kinetic and kinematic response under high loading rates. To discern the biomechanical influence of the lumbar spine’s anatomical structures during dynamic loading, the axial force, flexion-extension moments and range of motion for lumbar motion segments (n=18) were measured during different states of progressive dissection. Pre-compression was applied using a static mass while dynamic bending was applied using an offset drop mass. Dynamic loading resulted in peak axial loads of 4,224±133 N, while maximum peak extension and flexion moments were 19.6±12.5 and -44.8±8.6 Nm in the pre-dissected state, respectively. Upon dissection, transection of the interspinous ligament, ligamentum flavum and facet capsules resulted in significantly larger flexion angles, while the removal of the posterior elements increased the total peak angular displacement in extension from 3.3±1.5 to 5.0±1.7 degrees (p=0.002). This study provides insight on the contribution of individual anatomical components on overall lumbar response under high-rate loading, as well as validation data for numerical models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要