谷歌浏览器插件
订阅小程序
在清言上使用

Kappa rule-based modeling in synthetic biology.

Methods in molecular biology (Clifton, N.J.)(2015)

引用 6|浏览9
暂无评分
摘要
Rule-based modeling, an alternative to traditional reaction-based modeling, allows us to intuitively specify biological interactions while abstracting from the underlying combinatorial complexity. One such rule-based modeling formalism is Kappa, which we introduce to readers in this chapter. We discuss the application of Kappa to three modeling scenarios in synthetic biology: a unidirectional switch based on nitrosylase induction in Saccharomyces cerevisiae, the repressilator in Escherichia coli formed from BioBrick parts, and a light-mediated extension to said repressilator developed by the University of Edinburgh team during iGEM 2010. The second and third scenarios in particular form a case-based introduction to the Kappa BioBrick Framework, allowing us to systematically address the modeling of devices and circuits based on BioBrick parts in Kappa. Through the use of these examples, we highlight the ease with which Kappa can model biological interactions both at the genetic and the protein-protein interaction level, resulting in detailed stochastic models accounting naturally for transcriptional and translational resource usage. We also hope to impart the intuitively modular nature of the modeling processes involved, supported by the introduction of visual representations of Kappa models. Concluding, we explore future endeavors aimed at making modeling of synthetic biology more user-friendly and accessible, taking advantage of the strengths of rule-based modeling in Kappa.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要