谷歌浏览器插件
订阅小程序
在清言上使用

MicroRNA-30d Regulates Cardiomyocyte Pyroptosis by Directly Targeting Foxo3a in Diabetic Cardiomyopathy.

X Li,N Du, Q Zhang, J Li,X Chen, X Liu, Y Hu,W Qin,N Shen,C Xu, Z Fang,Y Wei,R Wang, Z Du,Y Zhang,Y Lu

Cell death and disease(2014)

引用 240|浏览19
暂无评分
摘要
Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which can result in cardiac hypertrophy and subsequent heart failure, associated with pyroptosis, the pro-inflammatory programmed cell death. MicroRNAs (miRNAs), small endogenous non-coding RNAs, have been shown to be involved in diabetic cardiomyopathy. However, whether miRNAs regulate pyroptosis in diabetic cardiomyopathy remains unknown. Our study revealed that mir-30d expression was substantially increased in streptozotocin (STZ)-induced diabetic rats and in high-glucose-treated cardiomyocytes as well. Upregulation of mir-30d promoted cardiomyocyte pyroptosis in diabetic cardiomyopathy; conversely, knockdown of mir-30d attenuated it. In an effort to understand the signaling mechanisms underlying the pro-pyroptotic property of mir-30d, we found that forced expression of mir-30d upregulated caspase-1 and pro-inflammatory cytokines IL-1β and IL-18. Moreover, mir-30d directly repressed foxo3a expression and its downstream protein, apoptosis repressor with caspase recruitment domain (ARC). Furthermore, silencing ARC by siRNA mimicked the action of mir-30d: upregulating caspase-1 and inducing pyroptosis. These findings promoted us to propose a new signaling pathway leading to cardiomyocyte pyroptosis under hyperglycemic conditions: mir-30d↑→foxo3a↓→ ARC↓→caspase-1↑→IL-1β, IL-18↑→pyroptosis↑. Therefore, mir-30d may be a promising therapeutic target for the management of diabetic cardiomyopathy.
更多
查看译文
关键词
Cardiomyopathies,Cell death,Diabetes,miRNAs,Life Sciences,general,Biochemistry,Cell Biology,Immunology,Cell Culture,Antibodies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要