Radioprotective effect of a pan-caspase inhibitor in a novel model of radiation injury to the nucleus of the abducens nerve.

MOLECULAR MEDICINE REPORTS(2014)

引用 5|浏览57
暂无评分
摘要
There is increasing evidence that neuronal cell death occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Radiation induces caspase activation fundamentally via the mitochondrial pathway. Caspases are the key regulators of apoptosis. Healthy male Sprague-Dawley rats were used in the present study to examine the radioprotective effect of a type of pan-caspase inhibitor, z-VAD-fmk, following radiation, to investigate the effects of caspase blockade in a model of the nucleus of the abducens nerve. z-VAD-fmk was injected intracerebroventricularly as a bolus injection (0.2 mu g/h for 1 h) into rats prior to exposure to radiation. Irradiation was conducted at room temperature at a dose of radiation of 4 Gy. The present study performed immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blot analysis and identified no significant changes in the expression of the X-linked inhibitor of apoptosis protein (XIAP) following radiation (P>0.05). As compared with the radiation alone group, the quantification of TUNEL-positive neurons was reduced in z-VAD-fmk-treated animals following radiation (P<0.01). Inhibition of caspase induced by z-VAD-fmk reduced the expression and activation of caspase-3, -8 and -9 (P<0.01). z-VAD-fmk effectively prevented radiation-induced apoptosis and this caspase inhibitor may be a potential therapeutic target in the treatment of brain radiation injury. The nucleus of the abducens nerve may be used as a radiation injury model, providing visual information and data on the apoptotic morphology of the abducens nucleus.
更多
查看译文
关键词
radiation,brain stem,caspase,caspase inhibitors,apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要