谷歌浏览器插件
订阅小程序
在清言上使用

Aggravated Renal Tubular Damage and Interstitial Fibrosis in Mice Lacking Guanylyl Cyclase-a (GC-A), a Receptor for Atrial and B-type Natriuretic Peptides.

Clinical and experimental nephrology(2014)

引用 6|浏览9
暂无评分
摘要
BACKGROUND AND AIM:The infusion of chronic angiotensin II (Ang II) has been shown to promote renal interstitial fibrosis. To evaluate the pathophysiological significance of the natriuretic peptide-GC-A system, we infused Ang II (1.0 mg/kg/day) in GC-A-deficient mice (GC-A-KO).METHODS:We used 5 groups (Wild-Saline n = 12, Wild-Ang II n = 14, GC-A-KO-Saline n = 11, GC-A-KO-Ang II n = 13, and GC-A-KO-Ang II-Hydralazine n = 10). Saline or Ang II was infused subcutaneously using an osmotic minipump for 3 weeks. Hydralazine was administered orally (0.05 g/L in drinking water).RESULTS:Systolic blood pressure was significantly higher in the GC-A-KO-Saline group (130 ± 12 mmHg) than in the Wild-Saline group (105 ± 30 mmHg), and was similar to that in the Wild-Ang II (141 ± 17 mmHg) and GC-A-KO-Ang II-Hydralazine (140 ± 20 mmHg) groups. Systolic blood pressure was significantly higher in the GC-A-KO-Ang II group (159 ± 21 mmHg) than in the 4 other groups. Renal tubular atrophy and interstitial fibrosis were significantly more severe in the GC-A-KO-Ang II group (atrophy 13.4 %, fibrosis 12.0 %) than in the Wild-Saline (0, 2.0 %), Wild-Ang II (2.9, 4.4 %), and GC-A-KO-Saline (0, 2.6 %) groups. Hydralazine could not inhibit this aggravation (GC-A-KO-Ang II-Hydralazine 13.5, 11.3 %). The expression of monocyte chemotactic protein-1 in tubular cells, and F4/80 and alpha-smooth muscle actin in the interstitium was clearly detected in the Ang II-infused wild and GC-A-KO groups and was associated with renal tubular atrophy and interstitial fibrosis. The expression of E-cadherin in tubular cells was absent in the Ang II-infused wild and GC-A-KO groups and was associated with renal tubular atrophy.CONCLUSIONS:The natriuretic peptide-GC-A system may play an inhibitory role in Ang II-induced renal tubular atrophy, interstitial fibrosis, and phenotypic transformation in renal tubular cells and fibroblasts.
更多
查看译文
关键词
Guanylyl cyclase-A,Angiotensin II,Renal tubular atrophy,Interstitial fibrosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要