Chrome Extension
WeChat Mini Program
Use on ChatGLM

Entanglement Generation in (1+1)D QED Scattering Processes

Physical Review D(2021)SCI 2区

Dipartimento Fis & Astron G Galilei | INFN Sezione di Padova

Cited 30|Views5
Abstract
We study real-time meson-meson scattering processes in (1 + 1)-dimensional QED by means of tensor networks. We prepare initial meson wave packets with given momentum and position introducing an approximation based on the free fermions model. Then, we compute the dynamics of two initially separated colliding mesons, observing a rich phenomenology as the interaction strength and the initial states are varied in the weak and intermediate coupling regimes. Finally, we consider elastic collisions and measure some scattering amplitudes as well as the entanglement generated by the process. Remarkably, we identify two different regimes for the asymptotic entanglement between the outgoing mesons: it is perturbatively small below a threshold coupling, past which its growth as a function of the coupling abruptly accelerates.
More
Translated text
Key words
Quantum Simulation
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Matteo Turco,Goncalo Quinta, Joao Seixas,Yasser Omar
2024

被引用2 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest