谷歌浏览器插件
订阅小程序
在清言上使用

The Magnetic Phase Diagram and Large Reversible Room-Temperature Magnetocaloric Effect in Antiperovskite Compounds Zn1−xSnxCFe3 (0 ≤ X ≤ 1)

Journal of applied physics(2012)

引用 12|浏览14
暂无评分
摘要
We report the magnetic phase diagram of antiperovskite compounds Zn1−xSnxCFe3 (0 ≤ x ≤ 1). The effects of the ratio of Zn/Sn on the structure, magnetic and electrical transport properties have been investigated systematically. With increasing the Sn content x, the lattice constant increases while both the Curie temperature (TC) and the saturated magnetization decrease gradually. All the resistivity curves of Zn1−xSnxCFe3 show a metal-like behavior in measured temperature range (2–350 K). In particular, the T2-power-law dependence of the electrical resistivity is obtained at low temperatures for all samples with x ≤ 0.3. It is noteworthy that, for x = 0.1, the TC is tuned just at the room temperature (∼300 K). Around TC, the magnetocaloric effect is considerably large with a magnetic entropy change of 2.78 J/kg K (ΔH = 45 kOe) as well as a relative cooling power (RCP) of 320 J/kg (ΔH = 45 kOe). Considering the considerably large RCP, suitable working temperature, inexpensive and innoxious raw materials, Zn0.9Sn0.1CFe3 is suggested to be a promising candidate for practical application in magnetic refrigeration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要