Modeling Chlorine Residuals In Drinking-Water Distribution-Systems
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE(1994)
Abstract
A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks, The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the rate of mass transfer of chlorine to the wall and is therefore dependent on pipe geometry and flow regime. The model can thus explain field observations that show higher chlorine decay rates associated with smaller pipe sizes and higher flow velocities. It has been incorporated into a computer program called EPANET that can perform dynamic water-quality simulations on complex pipe networks. The model is applied to chlorine measurements taken at nine locations over 53 h from a portion of the South Central Connecticut Regional Water Authority's service area. Good agreement with observed chlorine levels is obtained at locations where the hydraulics are well characterized. The model should prove to be a valuable tool for managing chlorine-disinfection practices in drinking-water distribution systems.
MoreTranslated text
Key words
distributed system,chlorine
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined