Synthesis and pharmacological evaluation of 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide and N-(2-cyanomethylsulfonylphenyl)acylamide derivatives as potential activators of ATP sensitive potassium channels

Bioorganic & Medicinal Chemistry(2005)

引用 35|浏览11
暂无评分
摘要
1,2,4-Thiadiazine derivatives, like 3-methyl-7-chlorobenzo-4H-1,2,4-thiadiazine 1,1-dioxide, diazoxide and 7-chloro-3-isopropylamino-4H-benzo-1,2,4-thiadiazine 1,1-dioxide, BPDZ 73, are potent openers of Kir6.2/SUR1 KATP channels. To explore the structure–activity relationship of this series of KATP openers, 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide and N-(2-cyanomethylsulfonylphenyl)acylamide derivatives were synthesized from 2-acetylamino-5-chloro-benzenesulfonic acid pyridinium salt or 2-aminobenzenethiols. The 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide derivatives (e.g., 7-chloro-3-isopropylamino-4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide, 3f) were found to activate KATP channels as indicated by their ability to hyperpolarize beta cell membrane potential, to inhibit glucose-stimulated insulin release in vitro and to increase ion currents through Kir6.2/SUR1 channel as measured by patch clamp. The potency and efficacy of, for example, 3f is however significantly reduced compared to the corresponding 4H-1,2,4-benzothiadiazine 1,1-dioxide derivatives. Opening of the 4H-1,2,4-thiadiazine ring to get (e.g., 2-cyanomethylsulfonyl-4-fluorophenyl) carbamic acid isopropyl ester (4c) gives rise to compounds, which are able to open KATP channels but with considerable reduced potency compared to, for example, diazoxide. Compound 3a, 7-chloro-3-methyl-4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide, which inhibits insulin release in vitro from beta cells and rat islets, reduces plasma insulin levels and blood pressure in anaesthetized rats upon intravenous administration.
更多
查看译文
关键词
atp,potassium,pharmacological evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要