Chrome Extension
WeChat Mini Program
Use on ChatGLM

Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics

Remote Sensing of Environment(2000)SCI 1区

Yale Univ | Yale University | International Center for Agricultural Research in the Dry Areas

Cited 1180|Views43
Abstract
The objective of this paper is to determine spectral bands that are best suited for characterizing agricultural crop biophysical variables. The data for this study comes from ground-level hyperspectral reflectance measurements of cotton, potato, soybeans, corn, and sunflower. Reflectance was measured in 490 discrete narrow bands between 350 and 1,050 nm. Observed crop characteristics included wet biomass, leaf area index, plant height, and (for cotton only) yield. Three types of hyperspectral predictors were tested: optimum multiple narrow band reflectance (OMNBR), narrow band normalized difference vegetation index (NDVI) involving all possible two-band combinations of 490 channels, and the soil-adjusted vegetation indices. A critical problem with OMNBR models was that of “over fitting” (i.e., using more spectral channels than experimental samples to obtain a highly maximum R2 value). This problem was addressed by comparing the R2 values of crop variables with the R2 values computed for random data of a large sample size. The combinations of two to four narrow bands in OMNBR models explained most (64% to 92%) of the variability in crop biophysical variables. The second part of the paper describes a rigorous search procedure to identify the best narrow band NDVI predictors of crop biophysical variables. Special narrow band lambda (λ1) versus lambda (λ2) plots of R2 values illustrate the most effective wavelength combinations (λ1 and λ2) and bandwidths (Δλ1 and Δλ2) for predicting the biophysical quantities of each crop. The best of these two-band indices were further tested to see if soil adjustment or nonlinear fitting could improve their predictive accuracy. The best of the narrow band NDVI models explained 64% to 88% variability in different crop biophysical variables. A strong relationship with crop characteristics is located in specific narrow bands in the longer wavelength portion of the red (650 nm to 700 nm), with secondary clusters in the shorter wavelength portion of green (500 nm to 550 nm), in one particular section of the near-infrared (900 nm to 940 nm), and in the moisture sensitive near-infrared (centered at 982 nm). This study recommends a 12 narrow band sensor, in the 350 nm to 1,050 nm range of the spectrum, for optimum estimation of agricultural crop biophysical information.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers

Linearized Vegetation Indices

Multispectral Satellite Image Understanding 2011

被引用2

The Estimation Models of Rape Biomass Yield Using Hyperspectral Data

YH Yang,JF Huang,FM Wang
Proceedings 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005 IGARSS '05

被引用2

Monitoring Biomass of Water Hyacinth by Using Hyperspectral Remote Sensing

2012 FIRST INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS) 2012

被引用0

Spectral and Spatial Variation at Leaf and Patch Scale of Invasive Wetland Weeds

IEEE International Geoscience and Remote Sensing Symposium 2008

被引用0

Context-aided Tracking with an Adaptive Hyperspectral Sensor

International Conference on Information Fusion 2011

被引用26

Determination of Leaf Area Index in Agricultural Systems

Agronomy MonographsMicrometeorology in Agricultural Systems 2005

被引用31

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest