Chrome Extension
WeChat Mini Program
Use on ChatGLM

You Are Where You Tweet: a Content-Based Approach to Geo-Locating Twitter Users

CIKM '10 Proceedings of the 19th ACM international conference on Information and knowledge management(2010)

Texas A&ampM University

Cited 1677|Views2
Abstract
We propose and evaluate a probabilistic framework for estimating a Twitter user's city-level location based purely on the content of the user's tweets, even in the absence of any other geospatial cues. By augmenting the massive human-powered sensing capabilities of Twitter and related microblogging services with content-derived location information, this framework can overcome the sparsity of geo-enabled features in these services and enable new location-based personalized information services, the targeting of regional advertisements, and so on. Three of the key features of the proposed approach are: (i) its reliance purely on tweet content, meaning no need for user IP information, private login information, or external knowledge bases; (ii) a classification component for automatically identifying words in tweets with a strong local geo-scope; and (iii) a lattice-based neighborhood smoothing model for refining a user's location estimate. The system estimates k possible locations for each user in descending order of confidence. On average we find that the location estimates converge quickly (needing just 100s of tweets), placing 51% of Twitter users within 100 miles of their actual location.
More
Translated text
Key words
Location Prediction,Location-Based Data,Social Sensing
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种基于推文内容估计Twitter用户城市级别位置的概率框架,无需依赖地理位置线索或用户私人信息,实现了快速准确的位置定位。

方法】:研究采用内容分析,自动识别具有地方特色的词汇,并结合基于格子的邻里平滑模型来精确估计用户位置。

实验】:通过实验,使用未知数据集,该框架平均仅需100条推文即可将51%的用户定位在距离实际位置100英里以内。