Adapting Boosting for Information Retrieval Measures
Information Retrieval(2009)
Abstract
We present a new ranking algorithm that combines the strengths of two previous methods: boosted tree classification, and LambdaRank, which has been shown to be empirically optimal for a widely used information retrieval measure. Our algorithm is based on boosted regression trees, although the ideas apply to any weak learners, and it is significantly faster in both train and test phases than the state of the art, for comparable accuracy. We also show how to find the optimal linear combination for any two rankers, and we use this method to solve the line search problem exactly during boosting. In addition, we show that starting with a previously trained model, and boosting using its residuals, furnishes an effective technique for model adaptation, and we give significantly improved results for a particularly pressing problem in web search--training rankers for markets for which only small amounts of labeled data are available, given a ranker trained on much more data from a larger market.
MoreTranslated text
Key words
Learning to rank,Boosting,Web search
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话