基本信息
浏览量:63
职业迁徙
个人简介
I am broadly interested in interactive machine learning, including active learning, contextual bandits, and reinforcement learning. My goal is to design algorithms with both statistical and computational efficiencies. Specifically, I study the following two aspects:
Sample complexity. Design algorithms that can learn good classifiers/polices with as few samples as possible, thus minimizing labeling efforts or human interventions.
Runtime and memory requirement. Once statistical efficiency is achieved, design practical algorithms that have runtime and memory requirement polynomially in problem-dependent parameters.
I am also interested in incorporating (deep) representation learning into the field of interactive machine learning, from both theoretical and empirical perspectives.
研究兴趣
论文共 15 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arXiv (Cornell University) (2024): 6549-6560
CoRR (2024)
引用0浏览0EI引用
0
0
ICML 2023 (2023)
引用0浏览0引用
0
0
International Conference on Machine Learningpp.27428-27453, (2022)
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151 (2022): 6735-6769
加载更多
作者统计
#Papers: 15
#Citation: 121
H-Index: 7
G-Index: 11
Sociability: 3
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn