基本信息
浏览量:62
职业迁徙
个人简介
I am motivated to design graph learning algorithms that are robust to in-the-Wild distribution shifts in real-world applications. Specifically, I work on:
Principles: transferable pre-training of GNNs (EGI), handling localized training data (SR-GNNs), domain adaptation via optimal Transport (GDOT)
Applications: entity alignment on unknown types(CG-Align), name disambiguation in academia network (GAND)and etc.
Principles: transferable pre-training of GNNs (EGI), handling localized training data (SR-GNNs), domain adaptation via optimal Transport (GDOT)
Applications: entity alignment on unknown types(CG-Align), name disambiguation in academia network (GAND)and etc.
研究兴趣
论文共 40 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8pp.9053-9061, (2024)
arXiv (Cornell University) (2023)
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) (2023)
CoRR (2023)
Zenodo (CERN European Organization for Nuclear Research) (2023)
user-61447a76e55422cecdaf7d19(2023)
引用0浏览0引用
0
0
WWW 2023 (2023)
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT V (2023): 168-177
加载更多
作者统计
#Papers: 39
#Citation: 793
H-Index: 14
G-Index: 28
Sociability: 5
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn