基本信息
浏览量:2
职业迁徙
个人简介
Research Areas
Structure and Function of the Tear Film and Ocular Surface Mucosal Epithelium
The McNamara lab’s earliest research in ocular biology was focused on the interrelationships of mucosal epithelial cells with the innate and adaptive immune systems. This work began during graduate school at the University of California, Berkeley, where Dr. McNamara conducted laboratory studies of tear film physiology and corneal epithelial structure and function in human subjects. Her research consisted of developing a convenient, quantitative fluorophotometric method to assess the barrier function of the ocular surface epithelium, followed by a fellowship at the Mayo Clinic, Rochester, MN, where she examined the effects of diabetic hyperglycemia on corneal physiology by pharmacologically inducing euglycemic and hyperglycemic conditions in diabetic patients.
Innate Defense of Mucosal Surfaces
During Dr. McNamara’s postdoctoral training at the University of California, San Francisco, she explored the role of mucosal immunity in protecting host epithelial cells from environmental insults, such as bacterial infection and chronic inflammation. Specifically, she dissected mechanisms underlying the upregulation of anti-microbial peptides (e.g., defensins) and mucins in response to Pseudomonas aeruginosa.
Key Effector Mechanisms Linking Chronic Inflammation to Dry Eye Pathogenesis
For over a decade, Dr. McNamara’s lab has explored the pathogenesis of dry eye disease with the goal of translating mechanism-based laboratory findings of dry eye immunopathology to the discovery of novel therapeutics. One of the most debilitating forms of dry eye results from autoimmune-mediated destruction of the lacrimal gland, such as that which occurs in Sjögren’s. The McNamara lab has characterized the dry eye phenotype of mice deficient in the autoimmune regulator (Aire) gene that portray key aspects of Sjogren’s immunopathology, including lymphocytic infiltration and destruction of the lacrimal gland, severe aqueous tear deficiency, loss of mucin secreting goblet cells, aberrant activation of epithelial progenitor cells, pathological keratinization of the ocular surface, and the profound loss of corneal nerves. They have shown an essential role for autoantigen-primed, CD4+ T cells in provoking ocular surface disease and have identified specific cytokine and intracellular intermediates that connect CD4+ T cell infiltration to ocular surface disease.
Deepening our Understanding of Sjogren’s-associated Neuropathy
As the McNamara lab continues to explore the molecular mechanisms that drive Sjogren’s-associated dry eye disease, they have established an important collaboration with the Knox lab at UCSF to deepened their understanding of the early stages of autoimmune dry eye development using RNA sequencing. RNAseq has allowed the labs to reveal important signaling pathways that provide valuable diagnostic markers. They have also expanded their basic science investigations to include the lacrimal gland by demonstrating significant neuropathy that closely mimics the peripheral neuropathies occurring in Sjogren’s patients. The McNamara lab established important collaborations with the McManus lab at UCSF to identify miR-205 as a critical regulator of lacrimal gland development and in 2017, Dr. McNamara served as a member of the Tear Film and Ocular Surface Society, Dry Eye Workshop (DEWS II), Pain and Sensation subcommittee to assist to develop a better understanding of the neuropathic changes that contribute to dry eye development and progression.
New Diagnostic Criteria and Novel Therapeutic Approaches for Sjogren’s-associated Dry Eye
Dr. McNamara’s expertise in the area of dry eye disease extends into the clinical arena. Between 2007-2012, she severed as a clinical investigator for the Sjögren’s International Collaborative Clinical Alliance (SICCA). In the laboratory, she explored the mechanistic link between chronic inflammation and corneal neuropathy to identify novel approaches to treat dry eye. She discovered that the naturally occurring tear glycoprotein, lacritin, has impressive neurotrophic properties in the Aire-deficient mouse that complement its well-established role as a prosecretory mitogen with tear-inducing properties. Accordingly, she demonstrated significant improvements in tear secretion, ocular surface integrity, and sensory innervation of the cornea in Aire-deficient mice following the topical application of lacritin. In collaboration with Robert McKown’s lab at James Madison University, they demonstated that 95% of dry eye patients are selectively deficient in lacritin, thus, its topical use as a natural replacement therapy for dry eye presents a tremendous opportunity to fill a large void in the clinical management of Sjogren’s patients. Lacripep (the bioactive peptide of lacritin) received FDA approval in 2016 and the first in-human, double-masked, multi-centered, randomized clinical trial was completed in the Fall of 2019, with UC Berkeley serving as one of the investigation sites. Initial analysis demonstrates significant improvement in inferior corneal staining and reduced symptoms of burning and stinging in Sjogren’s patients.
Structure and Function of the Tear Film and Ocular Surface Mucosal Epithelium
The McNamara lab’s earliest research in ocular biology was focused on the interrelationships of mucosal epithelial cells with the innate and adaptive immune systems. This work began during graduate school at the University of California, Berkeley, where Dr. McNamara conducted laboratory studies of tear film physiology and corneal epithelial structure and function in human subjects. Her research consisted of developing a convenient, quantitative fluorophotometric method to assess the barrier function of the ocular surface epithelium, followed by a fellowship at the Mayo Clinic, Rochester, MN, where she examined the effects of diabetic hyperglycemia on corneal physiology by pharmacologically inducing euglycemic and hyperglycemic conditions in diabetic patients.
Innate Defense of Mucosal Surfaces
During Dr. McNamara’s postdoctoral training at the University of California, San Francisco, she explored the role of mucosal immunity in protecting host epithelial cells from environmental insults, such as bacterial infection and chronic inflammation. Specifically, she dissected mechanisms underlying the upregulation of anti-microbial peptides (e.g., defensins) and mucins in response to Pseudomonas aeruginosa.
Key Effector Mechanisms Linking Chronic Inflammation to Dry Eye Pathogenesis
For over a decade, Dr. McNamara’s lab has explored the pathogenesis of dry eye disease with the goal of translating mechanism-based laboratory findings of dry eye immunopathology to the discovery of novel therapeutics. One of the most debilitating forms of dry eye results from autoimmune-mediated destruction of the lacrimal gland, such as that which occurs in Sjögren’s. The McNamara lab has characterized the dry eye phenotype of mice deficient in the autoimmune regulator (Aire) gene that portray key aspects of Sjogren’s immunopathology, including lymphocytic infiltration and destruction of the lacrimal gland, severe aqueous tear deficiency, loss of mucin secreting goblet cells, aberrant activation of epithelial progenitor cells, pathological keratinization of the ocular surface, and the profound loss of corneal nerves. They have shown an essential role for autoantigen-primed, CD4+ T cells in provoking ocular surface disease and have identified specific cytokine and intracellular intermediates that connect CD4+ T cell infiltration to ocular surface disease.
Deepening our Understanding of Sjogren’s-associated Neuropathy
As the McNamara lab continues to explore the molecular mechanisms that drive Sjogren’s-associated dry eye disease, they have established an important collaboration with the Knox lab at UCSF to deepened their understanding of the early stages of autoimmune dry eye development using RNA sequencing. RNAseq has allowed the labs to reveal important signaling pathways that provide valuable diagnostic markers. They have also expanded their basic science investigations to include the lacrimal gland by demonstrating significant neuropathy that closely mimics the peripheral neuropathies occurring in Sjogren’s patients. The McNamara lab established important collaborations with the McManus lab at UCSF to identify miR-205 as a critical regulator of lacrimal gland development and in 2017, Dr. McNamara served as a member of the Tear Film and Ocular Surface Society, Dry Eye Workshop (DEWS II), Pain and Sensation subcommittee to assist to develop a better understanding of the neuropathic changes that contribute to dry eye development and progression.
New Diagnostic Criteria and Novel Therapeutic Approaches for Sjogren’s-associated Dry Eye
Dr. McNamara’s expertise in the area of dry eye disease extends into the clinical arena. Between 2007-2012, she severed as a clinical investigator for the Sjögren’s International Collaborative Clinical Alliance (SICCA). In the laboratory, she explored the mechanistic link between chronic inflammation and corneal neuropathy to identify novel approaches to treat dry eye. She discovered that the naturally occurring tear glycoprotein, lacritin, has impressive neurotrophic properties in the Aire-deficient mouse that complement its well-established role as a prosecretory mitogen with tear-inducing properties. Accordingly, she demonstrated significant improvements in tear secretion, ocular surface integrity, and sensory innervation of the cornea in Aire-deficient mice following the topical application of lacritin. In collaboration with Robert McKown’s lab at James Madison University, they demonstated that 95% of dry eye patients are selectively deficient in lacritin, thus, its topical use as a natural replacement therapy for dry eye presents a tremendous opportunity to fill a large void in the clinical management of Sjogren’s patients. Lacripep (the bioactive peptide of lacritin) received FDA approval in 2016 and the first in-human, double-masked, multi-centered, randomized clinical trial was completed in the Fall of 2019, with UC Berkeley serving as one of the investigation sites. Initial analysis demonstrates significant improvement in inferior corneal staining and reduced symptoms of burning and stinging in Sjogren’s patients.
研究兴趣
论文共 106 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Yael Efraim,Feeling Yu Ting Chen, Seyyed Vahid Niknezhad,Dylan Pham, Ka Neng Cheong, Luye An,Hanan Sinada,Nancy A McNamara,Sarah M Knox
bioRxiv the preprint server for biology (2024)
COMMUNICATIONS BIOLOGYno. 1 (2023)
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCEno. 8 (2023)
引用0浏览0引用
0
0
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCEno. 8 (2023)
引用0浏览0引用
0
0
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCEno. 8 (2023)
引用0浏览0引用
0
0
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCEno. 8 (2023)
引用0浏览0引用
0
0
Brooke M. Justis, Casey E. Coburn, Ethan M. Tyler, Ryan S. Showalter,Brianna J. Dissler, Melissa Li,Nancy A. McNamara,Gordon W. Laurie,Robert L. McKown
Brooke M. Justis, Casey E. Coburn, Ethan M. Tyler, Ryan S. Showalter,Brianna J. Dissler, Melissa Li,Nancy A. McNamara, GordonW. Laurie,Robert L. McKown
semanticscholar(2020)
引用0浏览0引用
0
0
加载更多
作者统计
#Papers: 106
#Citation: 5065
H-Index: 29
G-Index: 69
Sociability: 5
Diversity: 3
Activity: 5
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn