基本信息
浏览量:43
职业迁徙
个人简介
My thesis is focused on improvement the reliability and safety of modern reinforcement learning methods, by explicitly leveraging models of epistemic and aleatory uncertainty to help make RL more reliable. My work leverages theory and practical applications of (approximate) Bayesian inference, transfer and knowledge representation, ensemble methods and safety. I am currently also a post-graduate affiliate at the Vector Institute since April 2020.
研究兴趣
论文共 15 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arXiv (Cornell University) (2024)
Proceedings of the International Conference on Automated Planning and Scheduling/Proceedings of the International Conference on Automated Planning and Scheduling (2024): 230-238
Uncertainty in Artificial Intelligence (2021)
引用0浏览0引用
0
0
arXiv (Cornell University) (2021)
加载更多
作者统计
#Papers: 15
#Citation: 69
H-Index: 3
G-Index: 7
Sociability: 3
Diversity: 1
Activity: 14
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn