基本信息
浏览量:28
职业迁徙
个人简介
Research Area
Synthetic Biology
Synthetic Biology is referred to as Life Engineering since it aims at modifying cells with the insertion of DNA circuits that carry out new, specific tasks. Possible applications are diagnostics, cure of disease, biofuel production, and environmental care. Research in Synthetic Biology is both theoretical and applied. Circuits are first designed on the computer. They are associated with mathematical models such that simulations can drive their wet-lab implementation.
On the computational side I am working on the development of a stand-alone piece of software for the design of biosensors in living cells. Biosensors detect one or more chemicals (inputs) in the cellular environment and, as a response, trigger the production of a clear output signal (e.g. fluorescence) or the activation of a pathway that establishes an interaction between the cells and the sensed chemicals. For instance, if the input is a pollutant, a properly engineered biosensor could lead to the degradation of this harmful substance.
Biosensors designed on the computer are implemented in my lab into the yeast S. cerevisiae. Yeast is the simplest eukaryotic organism and, as such, a perfect candidate to develop theoretical models and build biosensors that might be used later into more complex hosts such as mammalian cells.
Overall, building genetic biosensors demands a proper characterization of its basic components (promoters, mRNAs, and terminators) and the optimization of mechanisms for the regulation, in yeast, of transcription and translation processes (e.g. CRISPR-Cas9, TAL effectors, riboswitches, PUF proteins). These are two important research directions in my Synthetic Biology lab.
Synthetic Biology
Synthetic Biology is referred to as Life Engineering since it aims at modifying cells with the insertion of DNA circuits that carry out new, specific tasks. Possible applications are diagnostics, cure of disease, biofuel production, and environmental care. Research in Synthetic Biology is both theoretical and applied. Circuits are first designed on the computer. They are associated with mathematical models such that simulations can drive their wet-lab implementation.
On the computational side I am working on the development of a stand-alone piece of software for the design of biosensors in living cells. Biosensors detect one or more chemicals (inputs) in the cellular environment and, as a response, trigger the production of a clear output signal (e.g. fluorescence) or the activation of a pathway that establishes an interaction between the cells and the sensed chemicals. For instance, if the input is a pollutant, a properly engineered biosensor could lead to the degradation of this harmful substance.
Biosensors designed on the computer are implemented in my lab into the yeast S. cerevisiae. Yeast is the simplest eukaryotic organism and, as such, a perfect candidate to develop theoretical models and build biosensors that might be used later into more complex hosts such as mammalian cells.
Overall, building genetic biosensors demands a proper characterization of its basic components (promoters, mRNAs, and terminators) and the optimization of mechanisms for the regulation, in yeast, of transcription and translation processes (e.g. CRISPR-Cas9, TAL effectors, riboswitches, PUF proteins). These are two important research directions in my Synthetic Biology lab.
研究兴趣
论文共 66 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Synthetic Biology Methods in Molecular Biology (2024): 95-114
Methods in molecular biology (Clifton, N.J.) (2024): 77-94
NUCLEIC ACIDS RESEARCHno. 3 (2024): 1483-1497
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY (2024)
SYNTHETIC AND SYSTEMS BIOTECHNOLOGYno. 4 (2024): 638-646
Methods in molecular biologypp.109-119, (2024)
Frontiers in bioengineering and biotechnology (2023): 1267174
加载更多
作者统计
#Papers: 67
#Citation: 791
H-Index: 15
G-Index: 27
Sociability: 4
Diversity: 0
Activity: 2
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn