基本信息
浏览量:1
职业迁徙
个人简介
My research interests are in creating scalable, robust, and adaptable decision-making algorithms. Towards this goal, I have worked on generative models and in-context learning, deep reinforcement and imitation learning (particularly from large offline datasets), and robust deep learning.
My current aim is to create embodied foundation models for decision-making that generalize to out-of-distribution tasks and environments via in-context learning. I believe that semi-parametric methods (e.g., retrieval + transformers) will help achieve this goal.
My current aim is to create embodied foundation models for decision-making that generalize to out-of-distribution tasks and environments via in-context learning. I believe that semi-parametric methods (e.g., retrieval + transformers) will help achieve this goal.
研究兴趣
论文共 15 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
2024 IEEE/ACM CONFERENCE ON CONNECTED HEALTH APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES, CHASE 2024pp.25-36, (2024)
ACM COMPUTING SURVEYSno. 8 (2024)
ICLR 2024 (2024)
引用0浏览0EI引用
0
0
RTASpp.209-222, (2023)
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211 (2023)
PROCEEDINGS OF THE 2023 ACM/IEEE 14TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS, WITH CPS-IOTWEEK 2023pp.120-131, (2023)
2022 American Control Conference (ACC) (2022)
加载更多
作者统计
#Papers: 15
#Citation: 16
H-Index: 3
G-Index: 3
Sociability: 4
Diversity: 1
Activity: 2
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn