基本信息
浏览量:4
职业迁徙
个人简介
Description of Research
Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV) are associated with a number of human malignancies. These include Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, breast carcinoma, Kaposi's sarcoma and body cavity based lymphoma. We are investigating the fundamental mechanisms utilized by these gammaherpesviruses to induce cell mediated growth transformation. We are using genetics, genomics and biochemical approaches to establish unknown pathways involved in these cellular events and attempting to develop models that explain how gammaherpesviruses establish transformation in human cells.
EBV infects human B-lymphocytes and is the etiological agent of infectious mononucleosis. In vitro EBV efficiently growth transforms primary B-lymphocytes. Studies have demonstrated that only a subset of the viral latent genes is essential for EBV mediated transformation. One such gene is the EBV nuclear antigen EBNA3C. EBNA3C is a large nuclear transcription factor involved in modulating transcription activated by a cellular repressor RBP-Jkappa and other transcription factors. We are interested in other related functions of EBNA3C through its interactions with a number of other cellular molecules. Screens to identify other cellular targets have identified a number of interesting targets associated with EBNA3C. These molecules are involved in cell division, metastasis, apoptosis, cell cycle regulation and regulation of protein degradation. We are currently pursuing a number of these molecules in an effort to demonstrate their biochemical, structural and functional relevance in human cancers.
Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV) are associated with a number of human malignancies. These include Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, breast carcinoma, Kaposi's sarcoma and body cavity based lymphoma. We are investigating the fundamental mechanisms utilized by these gammaherpesviruses to induce cell mediated growth transformation. We are using genetics, genomics and biochemical approaches to establish unknown pathways involved in these cellular events and attempting to develop models that explain how gammaherpesviruses establish transformation in human cells.
EBV infects human B-lymphocytes and is the etiological agent of infectious mononucleosis. In vitro EBV efficiently growth transforms primary B-lymphocytes. Studies have demonstrated that only a subset of the viral latent genes is essential for EBV mediated transformation. One such gene is the EBV nuclear antigen EBNA3C. EBNA3C is a large nuclear transcription factor involved in modulating transcription activated by a cellular repressor RBP-Jkappa and other transcription factors. We are interested in other related functions of EBNA3C through its interactions with a number of other cellular molecules. Screens to identify other cellular targets have identified a number of interesting targets associated with EBNA3C. These molecules are involved in cell division, metastasis, apoptosis, cell cycle regulation and regulation of protein degradation. We are currently pursuing a number of these molecules in an effort to demonstrate their biochemical, structural and functional relevance in human cancers.
研究兴趣
论文共 312 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Atharva S. Torne,Erle S. Robertson
Cancersno. 5 (2024): 991
JOURNAL OF VIROLOGYno. 7 (2024)
Cell Insightno. 6 (2024): 100200
引用0浏览0引用
0
0
Virusesno. 3 (2023): 714-714
Journal of Biomedical Scienceno. 1 (2023)
加载更多
作者统计
#Papers: 315
#Citation: 11774
H-Index: 63
G-Index: 94
Sociability: 7
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn