基本信息
浏览量:825
职业迁徙
个人简介
My goal is to create AI systems that learn from few samples to robustly make good decisions, motivated by our applications to healthcare and education. My lab is part of the Stanford AI Lab, the Stanford Statistical ML group, and AI Safety @Stanford. My work has been honored by early faculty career awards (National Science Foundation, Office of Naval Research, Microsoft Research (1 of 7 worldwide) ). My and my amazing lab members' research has received 9 best research paper nominations and awards (CHI, EDMx3, LAK, UAI, RLDMx2, ITS). I am privileged to serve on the International Machine Learning Society (which coordinates ICML) Board, the Khan Academy Research Advisory Board, the Stanford Faculty Women's Forum Steering Committee, and and I previously served on the Women in Machine Learning (WIML) board.
研究兴趣
论文共 213 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
FOURTEENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, LAK 2024pp.404-415, (2024)
Management Science (2024)
引用0浏览0EI引用
0
0
Sherry Ruan,Allen Nie,William Steenbergen,Jiayu He, J. Q. Zhang, Meng Guo,Yao Liu, Kyle Dang Nguyen, Catherine Y. Wang,Rui Ying,James A. Landay,Emma Brunskill
MACHINE LEARNINGno. 5 (2024): 3023-3048
Matthew Jörke, Shardul Sapkota, Lyndsea Warkenthien, Niklas Vainio,Paul Schmiedmayer,Emma Brunskill,James Landay
CoRR (2024)
引用0浏览0EI引用
0
0
Trans Mach Learn Res (2024)
Educational Data Mining (2024)
加载更多
作者统计
#Papers: 212
#Citation: 8667
H-Index: 46
G-Index: 88
Sociability: 6
Diversity: 2
Activity: 99
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn