基本信息
浏览量:1
职业迁徙
个人简介
I develop designs and methods of analyses to evaluate treatments in medicine, public health and policy (causal inference). The increased quality and number of available treatments, and increasing ethical and practical constraints, are transforming the field of intervention research: the factors of research interest are no longer (and correctly so) the same as factors that we can intervene on humans. To address this, we have been developing new designs and methods for partially controlled studies, that is, studies that explore the factors that can be controlled, in order to investigate the effects of the factors of research interest.
For example, even in the most reliable medical studies -- the ``randomized studies'', patients often do not comply with the assigned treatments and drop out. We have shown that the ``intention-to-treat method'', which has been widely used for those situations, is not suitable to generally estimate even the ``intention-to-treat effects'', and we have provided appropriate methodology. We have recently integrated this work with Don Rubin in a unifying statistical framework, ``principal stratification". Principal stratification allows researchers to formulate designs and address a challenging statistical problem with partial control: to find the degree to which the effect of a controlled treatment or factor on a main outcome is explained by the effect of the controlled treatment on the activation of intermediate causal pathways that are not directly controlled.
Principal stratification has now been applied in a broad range of areas, including HIV; cancer; ophthalmology; orthopedics; mental health; nephrology; surrogate endpoints; noncompliance with missing outcomes; and effects of vaccines on viral load for those infected.
For example, even in the most reliable medical studies -- the ``randomized studies'', patients often do not comply with the assigned treatments and drop out. We have shown that the ``intention-to-treat method'', which has been widely used for those situations, is not suitable to generally estimate even the ``intention-to-treat effects'', and we have provided appropriate methodology. We have recently integrated this work with Don Rubin in a unifying statistical framework, ``principal stratification". Principal stratification allows researchers to formulate designs and address a challenging statistical problem with partial control: to find the degree to which the effect of a controlled treatment or factor on a main outcome is explained by the effect of the controlled treatment on the activation of intermediate causal pathways that are not directly controlled.
Principal stratification has now been applied in a broad range of areas, including HIV; cancer; ophthalmology; orthopedics; mental health; nephrology; surrogate endpoints; noncompliance with missing outcomes; and effects of vaccines on viral load for those infected.
研究兴趣
论文共 210 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
medRxiv the preprint server for health sciences (2024)
CREATIVE INDUSTRIES JOURNALno. 1 (2024): 3-27
Alcohol: Clinical and Experimental Researchno. 6 (2023): 1100-1108
openalex(2023)
AIDS and behaviorno. 2 (2023): 421-428
Neuromodulationno. 4 (2023): 850-860
Journal of Vascular and Interventional Radiologyno. 12 (2022): 1492-1499
加载更多
作者统计
#Papers: 208
#Citation: 12399
H-Index: 44
G-Index: 110
Sociability: 7
Diversity: 0
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn