基本信息
浏览量:41
职业迁徙
个人简介
Chemistry is the science of communication and change, and these interrelated processes are controlled by reversible interactions between molecules. Our ability to design and synthesize discrete molecular species has developed for over a century, and today we are capable of making extraordinary molecules that rival some of Nature’s best efforts when it comes to structural complexity and chemical reactivity. However, the synthesis of supramolecular assemblies composed of many different molecular fragments held together by non-covalent forces, is far less advanced, and our understanding of how groups of molecules communicate, bind, organize, and function, is still incomplete.
In our group we synthesize new organic molecules as well as coordination complexes using both conventional and mechanochemical synthetic protocols and subsequently we employ non-covalent interactions (such as hydrogen- and halogen bonds) to assemble molecular building blocks into supramolecular architectures with precise dimensions, topologies, and motifs.
Control over the assembly of molecules into extended networks is rapidly becoming an important target in both materials chemistry and biotechnology and through systematic structural studies we then correlate a wide variety of physical properties of the bulk materials with specific features of the individual building blocks. By translating molecular function into predictable intermolecular recognition we can create versatile pathways for improving processing, performance and shelf-life of a wide range of specialty chemicals such as pharmaceuticals, agrochemicals, dyes, non-linear optical and energetic materials.
In our group we synthesize new organic molecules as well as coordination complexes using both conventional and mechanochemical synthetic protocols and subsequently we employ non-covalent interactions (such as hydrogen- and halogen bonds) to assemble molecular building blocks into supramolecular architectures with precise dimensions, topologies, and motifs.
Control over the assembly of molecules into extended networks is rapidly becoming an important target in both materials chemistry and biotechnology and through systematic structural studies we then correlate a wide variety of physical properties of the bulk materials with specific features of the individual building blocks. By translating molecular function into predictable intermolecular recognition we can create versatile pathways for improving processing, performance and shelf-life of a wide range of specialty chemicals such as pharmaceuticals, agrochemicals, dyes, non-linear optical and energetic materials.
研究兴趣
论文作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
作者统计
#Papers: 287
#Citation: 11815
H-Index: 53
G-Index: 106
Sociability: 6
Diversity: 3
Activity: 17
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn