基本信息
浏览量:20
职业迁徙
个人简介
Research Interests
The focus of my research lab is on biochemical, biophysical, and cellular mechanisms governing hemostasis and thrombosis, and analysis of approved and/or novel therapeutics.
Coagulation occurs after cellular proteins are exposed to flowing blood. Exposure of these proteins triggers a series of enzymatic reactions that culminate in the production of thrombin. Thrombin then activates platelets and cleaves the plasma protein, fibrinogen, to fibrin, which polymerizes into a web-like mesh that stabilizes the blood clot. These processes are dictated by proteins and cells found in the blood, cells lining the blood vessels, and the flow of blood through the vessels. To examine events leading to clot formation, we use in vivo, ex vivo, and in vitro models of blood coagulation. By integrating these methodologies, we can precisely correlate enzyme activity (thrombin) and functional effect (clot formation, structure and stability). Our assays have demonstrated their utility as important tools for both basic and preclinical studies.
Thrombosis — Thrombosis [myocardial infarction (heart attack), cerebral infarction (stroke), and venous thromboembolism (blood clots in the arms and legs that may travel to the lungs)] is thought to result from abnormalities in vascular cells, blood proteins, and blood flow. We have demonstrated specific, causative roles for elevated levels of blood proteins (fibrinogen, factor VIII, prothrombin) in both arterial and venous thrombosis. Recently, we identified a novel role for transglutaminase activity in venous thrombosis and speculate this enzyme is a novel therapeutic target for thrombosis prevention. Ongoing work focuses on molecular mechanisms dictating the effects of these proteins on thrombin generation and fibrin formation, and how cross-talk between blood proteins and cells (leukocytes, platelets, red blood cells, and endothelium) promote thrombosis.
Bleeding — Hemophilias A and B are hereditary bleeding disorders. We are examining how hemophilia modulates thrombin generation, and clot formation, structure and stability. We have observed that deficiency in factors VIII or IX—proteins missing in patients with hemophilia—causes the formation of clots with an abnormal structure and decreased stability. We hypothesize that hemophilic bleeding results from formation of poorly structured clots and that therapies that stop bleeding do so by normalizing clot structure and stability. We are comparing different strategies to treat hemophilic bleeding, including replacement therapy and bypass therapy with high dose factor VIIa, FEIBA, and novel bioengineered “superenzymes.”
研究兴趣
论文作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
作者统计
#Papers: 286
#Citation: 9419
H-Index: 51
G-Index: 93
Sociability: 7
Diversity: 3
Activity: 69
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn