基本信息
浏览量:26
职业迁徙
个人简介
My research focuses on lifelong learning and deep sequential models. For one thing, we would like to build models that learn in a never-ending fashion. This is in stark contrast with traditional train/test pipeline of machine learning; therefore, we are investigating what kind of representations would enable lifelong learning. For another, we are working on continuous-time models for learning sequential data, e.g., physical systems, videos, handwriting, etc. We are particularly interested in neural ordinary differential equations for approximating dynamical systems, and also diffusion models that are capable of fitting temporal datasets.
研究兴趣
论文共 22 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
EMNLP 2024 (2024): 19834-19843
引用0浏览0引用
0
0
arXiv (Cornell University) (2024)
arXiv (Cornell University) (2023)
International Conference on Uncertainty in Artificial Intelligencepp.790-799, (2022)
International Conference on Learning Representations (2022)
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139 (2021)
引用50浏览0引用
50
0
arXiv (Cornell University) (2021)
引用3浏览0引用
3
0
加载更多
作者统计
#Papers: 22
#Citation: 420
H-Index: 7
G-Index: 15
Sociability: 4
Diversity: 1
Activity: 10
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn