Asteroseismic Signatures of Core Magnetism and Rotation in Hundreds of Low-Luminosity Red Giants
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2024)
Royal Astron Soc | Univ Hawaii | Univ Toulouse | Inst Sci & Technol Austria IST Austria
Abstract
Red giant stars host solar-like oscillations which have mixed character, being sensitive to conditions both in the outer convection zone and deep within the interior. The properties of these modes are sensitive to both core rotation and magnetic fields. While asteroseismic studies of the former have been done on a large scale, studies of the latter are currently limited to tens of stars. We aim to produce the first large catalogue of both magnetic and rotational perturbations. We jointly constrain these parameters by devising an automated method for fitting the power spectra directly. We successfully apply the method to 302 low-luminosity red giants. We find a clear bimodality in core rotation rate. The primary peak is at delta nu(rot) = 0.32 mu Hz, and the secondary at delta nu(rot) = 0.47 mu Hz. Combining our results with literature values, we find that the percentage of stars rotating much more rapidly than the population average increases with evolutionary state. We measure magnetic splittings of 2 sigma significance in 23 stars. While the most extreme magnetic splitting values appear in stars with masses >1.1 M-circle dot, implying they formerly hosted a convective core, a small but statistically significant magnetic splitting is measured at lower masses. Asymmetry between the frequencies of a rotationally split multiplet has previously been used to diagnose the presence of a magnetic perturbation. We find that of the stars with a significant detection of magnetic perturbation, 43 per cent do not show strong asymmetry. We find no strong evidence of correlation between the rotation and magnetic parameters.
MoreTranslated text
Key words
asteroseismology,methods: data analysis,stars: magnetic fields,stars: rotation
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话