谷歌浏览器插件
订阅小程序
在清言上使用

Development and Validation of a Smartphone-Based Deep-Learning-enabled System to Detect Middle-Ear Conditions in Otoscopic Images.

Constance Dubois,David Eigen, Francois Simon, Vincent Couloigner,Michael Gormish,Martin Chalumeau, Laurent Schmoll,Jeremie F. Cohen

npj Digit Medicine(2024)

引用 0|浏览4
暂无评分
摘要
Middle-ear conditions are common causes of primary care visits, hearing impairment, and inappropriate antibiotic use. Deep learning (DL) may assist clinicians in interpreting otoscopic images. This study included patients over 5 years old from an ambulatory ENT practice in Strasbourg, France, between 2013 and 2020. Digital otoscopic images were obtained using a smartphone-attached otoscope (Smart Scope, Karl Storz, Germany) and labeled by a senior ENT specialist across 11 diagnostic classes (reference standard). An Inception-v2 DL model was trained using 41,664 otoscopic images, and its diagnostic accuracy was evaluated by calculating class-specific estimates of sensitivity and specificity. The model was then incorporated into a smartphone app called i-Nside. The DL model was evaluated on a validation set of 3,962 images and a held-out test set comprising 326 images. On the validation set, all class-specific estimates of sensitivity and specificity exceeded 98%. On the test set, the DL model achieved a sensitivity of 99.0% (95% confidence interval: 94.5-100) and a specificity of 95.2% (91.5-97.6) for the binary classification of normal vs. abnormal images; wax plugs were detected with a sensitivity of 100% (94.6-100) and specificity of 97.7% (95.0-99.1); other class-specific estimates of sensitivity and specificity ranged from 33.3% to 92.3% and 96.0% to 100%, respectively. We present an end-to-end DL-enabled system able to achieve expert-level diagnostic accuracy for identifying normal tympanic aspects and wax plugs within digital otoscopic images. However, the system's performance varied for other middle-ear conditions. Further prospective validation is necessary before wider clinical deployment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要