谷歌浏览器插件
订阅小程序
在清言上使用

Quantifying Reinforcement of Forested (Cunninghamia lanceolata) Slopes with Different gradients based on In-Situ Pullout Experiments

Canadian Geotechnical Journal(2024)

引用 0|浏览8
暂无评分
摘要
Tree roots play a crucial role in hillslope stability, but quantifying their reinforcement remains challenging. This study aims to quantify the root reinforcement provided by Cunninghamia lanceolata across varying slope gradients based on in-situ pullout experiments. A total of 120 soil profiles were excavated to map root distribution across four slope gradients. Subsequently, 304 in situ pullout experiments were conducted encompassing root diameters ranging from 1 to 8 mm. The Root Bundle Model Weibull was calibrated and coupled with root distribution data to quantify reinforcement contributions from a single tree to stands. It was found slope gradient significantly influences root distribution, with steeper slopes harboring coarser and more widely distributed roots. In situ experiments revealed substantial variability in pullout stiffness and peak displacement for roots of the same diameter, with thicker roots exhibiting higher stiffness and greater displacement. Calculations indicate that root reinforcement exhibits an exponential decline with increasing distance from the stem but shows a marked positive association with slope gradient due to the influence on root distribution. Statistical analysis reveals that the area experiencing root reinforcement exceeding 10 kPa on a 40° slope is roughly double that of 0° and 20° stands.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要