谷歌浏览器插件
订阅小程序
在清言上使用

Dolomitic lime and silicate in no-till: Nutritional status, soil fertility, and soybean agronomic performance

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL(2024)

引用 0|浏览5
暂无评分
摘要
Limestone is the most widely used agricultural input for soil acidity correction and calcium (Ca) and magnesium (Mg) fertilization. However, other materials have the potential to fulfill these purposes, such as steel slags, also known as silicates. Silicates have higher solubility than limestone, serving as agents for increase pH in no-till, in addition to being a source of Ca, Mg, and silicon (Si). This study aimed to compare the effects of surface application of dolomitic lime and calcium magnesium silicate on soil chemical properties, soybean [Glycine max (L.) Merr.] nutritional status, and grain yield under no-till. The experiment was installed in the northwest Paran & aacute; State, Brazil, on a Rhodic Eutrustox. Lime and silicate rates were applied by broadcasting before the sowing of soybean. Silicate treatment increases soil Ca2+, pH, and base saturation up to a depth of 0.10 m. By contrast, liming effects on soil chemistry were restricted to the 0.05 m top layer after 24 months of application. The acidity correction and Ca2+ supply to greater soil depths and the increased leaf Si as a beneficial element provided by silicate treatment contributed to increasing soybean yield in the 2018/2019 and 2019/2020 seasons. Lime application, regardless of the rate, did not improve soybean yield. Waste from the steel industry can be used as acidity correctives and source of Si, Ca, and Mg, improving the agronomic performance of soybean. Silicate is more efficient in maintaining soil fertility compared to lime. Changes in soil fertility were observed up to a depth of 0.10 m after 24 months. Silicate increases silicon content in soybean leaf. Surface application of silicate increased soybean yield up to 43%. Soybean yield did not improve with lime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要