Synthesis and Electrochemical Performance of Flexible and Freestanding Graphene-Encapsulated PANi@MnO2/ECNFs Nanoscale Architectures for Electrochemical Supercapacitors

Russian Journal of Electrochemistry(2024)

引用 0|浏览1
暂无评分
摘要
We developeda facile method to construct flexible, freestanding three dimensional hierarchical electrodes that consist of graphene encapsulated one-dimensional conducting polyaniline (PANi)@MnO2 coaxial nanowires grown on electrospun carbon nanofibers (denoted as G-PANi@MnO2/ECNFs). A combination of XRD, SEM, and TEM techniques were used to characterize the structures of G‑PANi@MnO2/ECNFs. Electrochemical measurements confirmed that such nanostructured composites possessed higher electrochemical capacitance than that of each individual component due to synergistic effects. The G-PANi@MnO2/ECNFs electrode exhibited extremely high specific capacitance (1364.3 F/g at 0.3 A/g) and superior cycling stability (89.2
更多
查看译文
关键词
graphene,PANi@MnO2,electrospun carbon nanofibers,flexible,supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要