Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Sample Complexity of Simple Binary Hypothesis Testing

CoRR(2024)

Cited 0|Views18
No score
Abstract
The sample complexity of simple binary hypothesis testing is the smallest number of i.i.d. samples required to distinguish between two distributions p and q in either: (i) the prior-free setting, with type-I error at most α and type-II error at most β; or (ii) the Bayesian setting, with Bayes error at most δ and prior distribution (α, 1-α). This problem has only been studied when α = β (prior-free) or α = 1/2 (Bayesian), and the sample complexity is known to be characterized by the Hellinger divergence between p and q, up to multiplicative constants. In this paper, we derive a formula that characterizes the sample complexity (up to multiplicative constants that are independent of p, q, and all error parameters) for: (i) all 0 ≤α, β≤ 1/8 in the prior-free setting; and (ii) all δ≤α/4 in the Bayesian setting. In particular, the formula admits equivalent expressions in terms of certain divergences from the Jensen–Shannon and Hellinger families. The main technical result concerns an f-divergence inequality between members of the Jensen–Shannon and Hellinger families, which is proved by a combination of information-theoretic tools and case-by-case analyses. We explore applications of our results to robust and distributed (locally-private and communication-constrained) hypothesis testing.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined