谷歌浏览器插件
订阅小程序
在清言上使用

High-Pressure and Temperature Effects on the Clustering Ability of Monohydroxy Alcohols

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览10
暂无评分
摘要
This study examined the clustering behavior of monohydroxy alcohols, where hydrogen-bonded clusters of up to a hundred molecules on the nanoscale can form. By performing X-ray diffraction experiments at different temperatures and under high pressure, we investigated how these conditions affect the ability of alcohols to form clusters. The pioneering high-pressure experiment performed on liquid alcohols contributes to the emerging knowledge in this field. Implementation of molecular dynamics simulations yielded excellent agreement with the experimental results, enabling the analysis of theoretical models. Here we show that at the same global density achieved either by alteration of pressure or temperature, the local aggregation of molecules at the nanoscale may significantly differ. Surprisingly, high pressure not only promotes the formation of hydrogen-bonded clusters but also induces the serious reorganization of molecules. This research represents a milestone in understanding association under extreme thermodynamic conditions in other hydrogen bonding systems such as water.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要