谷歌浏览器插件
订阅小程序
在清言上使用

FeOx-Modified Ultrafine Platinum Particles Supported on MgFe2O4 with High Catalytic Activity and Promising Stability toward Low-Temperature Oxidation of CO

Molecules(2024)

引用 0|浏览5
暂无评分
摘要
Catalytic oxidation is widely recognized as a highly effective approach for eliminating highly toxic CO. The current challenge lies in designing catalysts that possess exceptional low-temperature activity and stability. In this work, we have prepared ultrafine platinum particles of similar to 1 nm diameter dispersed on a MgFe2O4 support and found that the addition of 3 wt.% FeOx into the 3Pt/MgFe2O4 significantly improves its activity and stability. At an ultra-low temperature of 30 degrees C, the CO can be totally converted to CO2 over 3FeO(x)-3Pt/MgFe2O4. High and stable performances of CO-catalytic oxidation can be obtained at 60 degrees C on 3FeO(x)-3Pt/MgFe2O4 over 35 min on-stream at WHSV = 30,000 mL/(g.h). Based on a series of characterizations including BET, XRD, ICP, STEM, H-2-TPR, XPS, CO-DRIFT, O-2-TPD and CO-TPD, it was disclosed that the relatively high activity and stability of 3FeO(x)-3Pt/MgFe2O4 is due to the fact that the addition of FeOx could facilitate the antioxidant capacity of Pt and oxygen mobility and increase the proportion of adsorbed oxygen species and the amounts of adsorbed CO. These results are helpful in designing Pt-based catalysts exhibiting higher activity and stability at low temperatures for the catalytic oxidation of CO.
更多
查看译文
关键词
catalyst,ultrafine platinum particles,MgFe2O4,FeOx modification,CO oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要