谷歌浏览器插件
订阅小程序
在清言上使用

“Determination of Hydric Potencial through Geoelectric and Piezometric methods in the Ichickcollcococha Wetland, Pachacoto Hydrographic Unit, Cordillera Blanca, Perú.” 

Leila Maribel Mamani,W. Harrinson Jara, Velnia Chaca,Juan C. Torres, Helder Mallqui, Manuel Cosi, Cristian Quispe, Milagros Aquino

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Abstracts High-Andean bofedales are vegetated wetlands that play a crucial role in the context of climate change by facilitating the capture of carbon dioxide and regulating water. However, global warming has led to the glacial retreat of major snow-capped peaks, such as the Pastoruri Glacier, resulting in water scarcity that directly impacts these ecosystems. Hence, there is a pressing need to study them. This research aims to characterize the physical structure of the Ichickcollcococha bofedal, located in the Pachacoto Hydrographic Unit in the southern sector of the Cordillera Blanca, Peru. The objective is to determine its water storage potential during periods of high precipitation and drought. The study employs the Vertical Electrical Sounding (VES) geophysical prospecting method, corroborated by vibrating wire piezometers installed in the Ichickcollcococha bofedal. This method allows for a detailed analysis of the subsurface resistive properties, generating geo-electric profiles that detail the internal structure of the bofedal. Three horizons have been identified: the upper layer is loosely composed of organic material (vegetation, cushioned bofedales) with high moisture content, reaching a depth of approximately 1.5 meters and average resistivity values around 431 Ohm.m. The second layer extends to a depth of 11 meters with resistivities of 67 Ohm.m, corresponding to organic materials such as peat and saturated sands. The third horizon, with estimated depths of 80 meters and resistivities around 1301 Ohm.m, corresponds to underlying limestone rock. The data obtained from the Ichickcollcococha bofedal align with characteristic values of glacial-origin peat bogs. The findings of this study provide a comprehensive understanding of the internal characteristics of the Ichickcollcococha bofedal, highlighting its contribution to the knowledge of its internal dynamics and its implications for the water potential of high-Andean bofedales. Furthermore, the results offer valuable information for modeling and water resource management. Keywords: Bofedal, Hydric potential, geoelectric method, VES.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要