谷歌浏览器插件
订阅小程序
在清言上使用

The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes

Materials(2024)

引用 0|浏览3
暂无评分
摘要
The increasing demand for safe and high-energy-density battery systems has led to intense research into solid electrolytes for rechargeable batteries. One of these solid electrolytes is the NASICON-type Li1+xAlxTi2−x(PO4)3 (LATP) material. In this study, different boron compounds (10% B2O3 doped, 10% H3BO3 doped, and 5% B2O3 + 5% H3BO3 doped) were doped at total 10 wt.% into the Ti4+ sites of an LATP solid electrolyte to investigate the structural properties and ionic conductivity of solid electrolytes using the solid-state synthesis method. Characterization of the synthesized samples was conducted using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The XRD patterns of the boron-doped LATP (LABTP) samples show that the samples have a rhombohedral phase with space group R3¯c together and low amounts of impurity phases. While all the LABTP samples exhibited similar ionic conductivity values of around 10−4 S cm−1, the LABTP2 sample doped with 10 wt.% H3BO3 demonstrated the highest ionic conductivity. These findings suggest that varying B3+ ion doping strategies in LATP can significantly advance the development of solid electrolytes for all-solid-state lithium-ion batteries.
更多
查看译文
关键词
LATP solid electrolyte,boron doping,crystal structure,ionic conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要