Chrome Extension
WeChat Mini Program
Use on ChatGLM

Unveiling the Multifaceted Hazard Risks of Volcanic Eruptions: The case of Kolumbo submarine volcano

Anna Katsigera,Paraskevi Nomikou, Kosmas Pavlopoulos,Paraskevi Polymenakou,Konstantinos Karantzalos, Aggelos Mallios, Sergio Simone Scire Scapuzzo,Andrea Luca Rizzo, Gianluca Lazaro,Manfredi Longo,Walter D'Alessandro,Fausto Grassa,Lars-Eric Heimbürger-Boavida,Valsamis Ntouskos, Christos Antoniou, Sotiris Spanos

crossref(2024)

Cited 0|Views15
No score
Abstract
Volcanic eruptions stand as formidable threats to adjacent communities, unleashing a spectrum of hazards such as earthquakes, tsunamis, pyroclastic flows, and toxic gases. The imperative for proactive management of volcanic risks cannot be overstated, particularly in densely populated areas where the potential for widespread devastation looms large. Kolumbo, an active submerged volcano located approximately 7 kilometers northeast of Santorini Island in Greece at 500m depth, serves a pertinent case. Its historical record is marred by an eruption in 1650 AD which triggered a relentless tsunami. The aftermath witnessed havoc on neighboring islands, coupled with casualties stemming from noxious gases in Santorini. Eyewitness accounts mention maximum water run-up heights of 20m on the southern coast of Ios, a staggering 240m inundation on Sikinos, and a disconcerting flooding of up to 2km² of land on the eastern coast of Santorini.Recent studies suggest that a potential future explosive eruption of Kolumbo poses a substantial hazard to the northern and eastern coasts of Santorini. Unfortunately, the absence of a concrete management protocol, leaves these areas vulnerable to an impending threat that demands immediate attention. Therefore, it is recommended that a comprehensive approach be adopted, involving scientific research (active monitoring, hazard maps), community engagement, preparedness planning with government agencies, and the development of timely response strategies to reduce the associated risks, prevent casualties, and mitigate the consequences on the region's economy and infrastructure. Our team has multidisciplinary data from past oceanographic expeditions that will help us to understand Kolumbo’s behavior. These include a) High-resolution multibeam bathymetry data and optical data., b) a dense network of sub-seafloor seismic reflection profiles, c) a series of the seafloor and sub-seafloor samples of microbial mat and sediments, d) CTD data, e) several polymetallic (Au, Ag, As, Sb, Pb, Hg, Mo, Zn, Cu, Tl) CO2 diffuser chimney samples and f) tephra in marine sediment cores. Despite the current knowledge that we managed to obtain, monitoring is needed to efficiently assess potential hazards and create early warning systems and management protocols for an imminent eruption from Kolumbo. In the current context, advanced sensors have been deployed to monitor Kolumbo's active hydrothermal field as part of the SANTORY project. The SANTORY project aims to create innovative communication tools and establish interregional monitoring protocols, providing the scientific community, policymakers, and stakeholders with the means to assess hazard warning codes effectively.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined