Chrome Extension
WeChat Mini Program
Use on ChatGLM

Multiphase characterization of AGN winds in five local type-2 quasars

ASTRONOMY & ASTROPHYSICS(2024)

Cited 0|Views16
No score
Abstract
We present MEGARA integral field unit (IFU) observations of five local type-2 quasars (QSO2s, z similar to 0.1) from the Quasar Feedback (QSOFEED) sample. These active galactic nuclei (AGN) have bolometric luminosities of 10(45.5 - 46) erg s(-1) and stellar masses of similar to 10(11) M-circle dot. The LR-V grating of MEGARA allows us to explore the kinematics of the ionized gas through the [O III]lambda 5007 & Aring; emission line. The nuclear spectra of the five QSO2s, extracted in a circular aperture of similar to 1.2 '' (similar to 2.2 kpc) in diameter, matching the resolution of these seeing-limited observations, show signatures of high velocity winds in the form of broad (full width at half maximum, 1300 <= FWHM <= 2240 km s(-1)) and blueshifted components. We found that four out of the five QSO2s present outflows that we can resolve with our seeing-limited data, and they have radii ranging from 3.1 to 12.6 kpc. In the case of the two QSO2s with extended radio emission, we found that it is well aligned with the outflows, suggesting that low-power jets might be compressing and accelerating the ionized gas in these radio-quiet QSO2s. In the four QSO2s with spatially resolved outflows, we measured ionized mass outflow rates of 3.3-6.5 M-circle dot yr(-1) when we used [S II]-based densities, and of 0.7-1.6 M-circle dot yr(-1) when trans-auroral line-based densities were considered instead. We compared them with the corresponding molecular mass outflow rates (8-16 M-circle dot yr(-1)), derived from CO(2-1) ALMA observations at 0.2 '' resolution. The cold molecular outflows carry more mass than their ionized counterparts. However, both phases show lower outflow mass rates than those expected from observational scaling relations where uniform assumptions on the outflow properties were adopted. This might be indicating that the AGN luminosity is not the only driver of massive outflows and/or that these relations need to be rescaled using accurate outflow properties (i.e., electron density and radius). We did not find a significant impact of the outflows on the global star formation rates when considering the energy budget of the molecular and ionized outflows together. However, spatially resolved measurements of recent star formation in these targets are needed in order to evaluate this fairly, considering the dynamical timescales of the outflows, of 3-20 Myr for the ionized gas and 1-10 Myr for the molecular gas.
More
Translated text
Key words
galaxies: active,galaxies: evolution,quasars: emission lines,galaxies: nuclei
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined