A reactive electrochemomechanical theory for growth and remodeling of polyelectrolyte hydrogels and application to dynamic polymerization of DNA hydrogels

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS(2024)

引用 0|浏览7
暂无评分
摘要
This study develops a framework for growth and remodeling of active polyelectrolyte hydrogels that accounts for effects of compositional changes on the mechanical response. By developing a reactive electrochemomechanical theory, thermodynamical constraints upon reactive and remodeling processes are elucidated within a general framework that allows any number of chemical reactions to evolve the response of the gel and transfer mass and charge between constituents. Fully coupled, nonlinear constitutive relations are adopted for molar fluxes, allowing exploration of effects including cross -diffusion, electrophoresis, and electro-osmosis. A robust finite element implementation is developed in the open source FEBio software (febio.org) by exploiting an equivalence between electrochemomechanics and mixture theory. The implementation is verified against analytical solutions for free swelling, and a proper reduction to a prior chemomechanical theory is demonstrated for neutral gels swollen only by a solvent with no solutes. The theory and implementation are then applied to model the tunable large swelling achieved through dynamic polymerization of DNA crosslinkers seen in our recently developed experimental hydrogel system (Cangialosi et al., 2017). A novel constitutive model for reaction -driven evolution of the locking stretch lambda(L) in a non -Gaussian mechanical free energy was developed, where the increasing concentration of DNA crosslinkers makes further swelling energetically favorable. With a single free parameter, excellent agreement was found between measured and predicted equilibrium swelling ratios. This study demonstrated the ability to extend the electrochemomechanical framework to include chemical reactions and composition -aware constitutive models, and showed that development of reactive models allows simulation of complex dynamic polymerization phenomena not treated before. The theoretical frame here can be further expanded in scope to incorporate additional non -ideal and nonlinear phenomena.
更多
查看译文
关键词
Polyelectrolyte,Thermodynamics,Gels,Finite elements,Electro-chemo-mechanics,Dynamic polymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要