Critical behavior of the three-dimensional random-anisotropy Heisenberg model

PHYSICAL REVIEW E(2022)

Cited 0|Views7
No score
Abstract
We have studied the critical properties of the three-dimensional random anisotropy Heisenberg model by means of numerical simulations using the Parallel Tempering method. We have simulated the model with two different disorder distributions, cubic and isotropic ones, with two different anisotropy strengths for each disorder class. For the case of the anisotropic disorder, we have found evidence of universality by finding critical exponents and universal dimensionless ratios independent of the strength of the disorder. In the case of isotropic disorder distribution the situation is very involved: we have found two phase transitions in the magnetization channel which are merging for larger lattices remaining a zero magnetization low-temperature phase. Studying this region using a spin-glass order parameter we have found evidence for a spin-glass phase transition. We have estimated effective critical exponents for the spin-glass phase transition for the different values of the strength of the isotropic disorder, discussing the crossover regime.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined