Chrome Extension
WeChat Mini Program
Use on ChatGLM

Kinematics Parameter Calibration of Serial Industrial Robots Based on Partial Pose Measurement

Tiewu Xiang, Xinyi Jiang,Guifang Qiao, Chunhui Gao,Hongfu Zuo, Philip Trevelyan

MATHEMATICS(2023)

Cited 0|Views1
No score
Abstract
The kinematics parameter error is the main error factor that affects the absolute accuracy of industrial robots. The absolute accuracy of industrial robots can be effectively improved through kinematics calibration. The error model-based method is one of the main methods for calibrating the kinematics parameter error. This paper presents a kinematics parameter calibration method for serial industrial robots based on partial pose measurement. Firstly, the kinematics and the pose error models have been established based on the modified Denavit-Hartenberg (MDH) model. By introducing the concept of error sensitivity, the average significance index is proposed to quantitatively analyze the effects of the kinematics parameter error on the pose error of a robot. The results show that there is no need to measure the full pose error of the robot. Secondly, a partial pose measurement device and method have been presented. The proposed device can measure the position error and the attitude error on the x-axis or y-axis. Finally, the full pose error model, the NP-type partial pose error model, and the OP-type partial pose error model have been applied for calibrating the kinematics parameter errors. The experimental results show that the effectiveness of the OP-type partial pose error model is consistent with the full pose error model.
More
Translated text
Key words
serial robot,error sensitivity,MDH model,positional error,pose measurement
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined