谷歌浏览器插件
订阅小程序
在清言上使用

Colossal Electrocaloric Effect in an Interface-Augmented Ferroelectric Polymer.

Science(2023)

引用 0|浏览5
暂无评分
摘要
The electrocaloric effect demands the maximized degree of freedom (DOF) of polar domains and the lowest energy barrier to facilitate the transition of polarization. However, optimization of the DOF and energy barrier-including domain size, crystallinity, multiconformation coexistence, polar correlation, and other factors in bulk ferroelectrics-has reached a limit. We used organic crystal dimethylhexynediol (DMHD) as a three-dimensional sacrificial master to assemble polar conformations at the heterogeneous interface in poly(vinylidene fluoride)-based terpolymer. DMHD was evaporated, and the epitaxy-like process induced an ultrafinely distributed, multiconformation-coexisting polar interface exhibiting a giant conformational entropy. Under a low electric field, the interface-augmented terpolymer had a high entropy change of 100 J/(kg·K). This interface polarization strategy is generally applicable to dielectric capacitors, supercapacitors, and other related applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要