谷歌浏览器插件
订阅小程序
在清言上使用

SMYD3 Modulates AMPK-mTOR Signaling Balance in Cancer Cell Response to DNA Damage.

Cells(2023)

引用 0|浏览11
暂无评分
摘要
Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.
更多
查看译文
关键词
SMYD3,AMPK,mTOR,DNA damage,gastrointestinal cancer,breast cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要