谷歌浏览器插件
订阅小程序
在清言上使用

Mussel-inspired hydrogels with UCST for temperature-controlled reversible adhesion

Giant(2023)

引用 1|浏览5
暂无评分
摘要
Achieving on-demand adhesion on different surfaces remains an adaunting challenge for polymer adhesives. Herein, we report a temperature-controlled adhesion strategy of hydrogels based on the reversible exposure and shielding of adhesive promoters regulated by microphase separation. The hydrogels are constructed by the physical crosslinking (hydrogen bonding and ion interaction) of a ternary random copolymer (PQAM) derived from the copolymerization of catechol containing quaternary ammonium salt monomer (QCA), acrylic acid (AA), and acrylamide (AAm). The physically crosslinked polymer networks can effectively toughen the hydrogels, resulting in tensile fracture strength, elongation, and energy up to 43.3 kPa, 1223%, and 9.5 kJ/m2, respectively. PQAM hydrogels exhibit upper critical solution temperature (UCST) behavior, and the transition temperature can be easily adjusted from 42.1 to 49.0 °C by changing the content of PQCA. PQAM hydrogels are non-transparent and non-adhesive at temperatures below UCST, while become transparent and highly adhesive at temperatures above UCST. By simply controlling the temperature, PQAM hydrogels can repeatedly attach to and detach from various substrates (including glass, plastics, ceramic, rock, wood, and metal) with an optimal adhesion strength up to 35.5 kPa. The strategy of hiding adhesive promoters may be interesting in the design of smart adhesives.
更多
查看译文
关键词
Hydrogels,Adhesive polymers,Phase transition,Temperature response,Supramolecular interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要