谷歌浏览器插件
订阅小程序
在清言上使用

Integrated Protein Solubility Shift Assays for Comprehensive Drug Target Identification on a Proteome-Wide Scale.

Analytical chemistry(2023)

引用 1|浏览9
暂无评分
摘要
Target proteins are often stabilized after binding with a ligand and thereby typically become more resistant to denaturation. Based on this phenomenon, several methods without the need to covalently modify the ligand have been developed to identify target proteins for a specific ligand. These methods usually employ complicated workflows with high cost and limited throughput. Here, we develop an iso-pH shift assay (ipHSA) method, a proteome-wide target identification method that detects ligand-induced protein solubility shifts by precipitating proteins with a single concentration of acidic agent followed by protein quantification via data-independent acquisition (DIA). Using a pan-kinase inhibitor, staurosporine, we demonstrated that ipHSA increased throughput compared to the previously developed pH-dependent protein precipitation (pHDPP) method. ipHSA was found to have high complementarity in staurosporine target identification compared with the improved isothermal shift assay (iTSA) and isosolvent shift assay (iSSA) using DIA instead of tandem mass tags (TMTs) for quantification. To further improve target identification sensitivity, we developed an integrated protein solubility shift assay (IPSSA) by pooling the supernatants yielded from ipHSA, iTSA, and iSSA methods. IPSSA exhibited increased sensitivity in screening staurosporine targets by 38, 29, and 38% compared to individual methods. Increasing the number of replicate experiments further enhanced the sensitivity of target identification. Meanwhile, IPSSA also improved the throughput and reduced the cost compared with previous methods. As a fast and efficient tool for drug target identification, IPSSA is expected to have broad applications in the study of the mechanism of action.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要