谷歌浏览器插件
订阅小程序
在清言上使用

Polyploid Tubular Cells Initiate a TGF-β1 Controlled Loop That Sustains Polyploidization and Fibrosis after Acute Kidney Injury.

American journal of physiology Cell physiology(2023)

引用 0|浏览31
暂无评分
摘要
Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-β1 expression and that TGF-β1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-β1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-β1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.
更多
查看译文
关键词
CKD,fibrosis,polyploidy,TGF-beta 1,tubular epithelial cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要