谷歌浏览器插件
订阅小程序
在清言上使用

F-erythrocytes promote Plasmodium falciparum proliferation in sickle cell disease.

American journal of hematology(2023)

引用 0|浏览12
暂无评分
摘要
BACKGROUND:Sickle cell disease (SCD) remains prevalent because heterozygous carriers (HbAS) are partially resistant to Plasmodium falciparum malaria. Sickle hemoglobin (HbS) polymerization in low and intermediate oxygen (O2 ) conditions is the main driver of HbAS-driven resistance to P. falciparum malaria. However, epidemiological studies have reported mixed malaria morbidity and mortality outcomes in individuals with sickle cell disease (SCD). While maximum-tolerated dose hydroxyurea has been shown to lower malaria incidence, fetal hemoglobin (HbF), an inhibitor of HbS polymerization that is variably packaged in F-erythrocytes, might provide hemoglobin that is accessible to the parasite for feeding. METHODS:To explore that risk, we examined the effect of variable mean corpuscular fetal hemoglobin (MCHF) on P. falciparum proliferation, invasion, and development in HbSS RBCs. RESULTS:We found that greater MCHF in HbSS red blood cells (RBCs) is associated with increased P. falciparum proliferation in O2 environments comparable with the microcirculation. Moreover, both parasite invasion and intracellular growth, the major components of proliferation, occur predominantly in F-erythrocytes and are augmented with increasing MCHF. CONCLUSIONS:HbF modifies P. falciparum infection in HbSS RBCs, further highlighting the complexity of the molecular interactions between these two diseases. Other inhibitors of HbS polymerization that do not increase HbF or F-erythrocytes should be independently assessed for their effects on P. falciparum malaria proliferation in HbSS RBCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要