Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4

Journal of colloid and interface science(2023)

引用 0|浏览9
暂无评分
摘要
The introduction of nitrogen vacancies into polymeric carbon nitride (PCN) has been attested to be a reliable strategy to enhance photocatalytic performance. Nitrogen vacancies were considered as active sites to promote the adsorption of target molecules and capture photoexcited electrons to inhibit the recombination of charge pairs, accelerate photoinduced electrons to participate in photocatalytic reaction. In this paper, a series of PCN with rich nitrogen vacancies were prepared by etching of chromic acid solution. Sample 20KCSCN had the highest photocatalytic performance whose evolution efficiency of CO2 to CO and CH4 can reach 3.9 and 0.5 μmol·g−1·h−1, respectively. These evolution efficiencies are 2.9 and 4 times higher than that of the PCN. Meanwhile, 20KCSCN demonstrates high CO conversion selectivity and stability. The successful introduction of nitrogen vacancies not only increases the active sites of PCN surface, but also optimizes the optical structure, which dramatically boosts the separation of photoexcited charge pairs and the reduction capacity of photogenerated electrons. The enhancement mechanism for photocatalytic CO2 reduction performance of PCN was proposed. Besides, photocatalytic H2 evolution experiments were performed on all samples to confirm the universality of PCN photocatalytic activity enhancement etched by chromic acid solution. H2 evolution rate on 20KCSCN can reach 652 μmol·g−1·h−1, which is 1.6-fold higher than that on PCN (254 μmol·g−1·h−1) after 4 h irradiation under a 300 W Xe lamp. This work offers new venue for introducing nitrogen vacancies in PCN to regulate photoexcited charge pairs transfer. The photocatalytic enhancement of CO2 reduction could be used to alleviate the serious issue of excessive CO2 emission and energy crisis.
更多
查看译文
关键词
PCN,Nitrogen vacancies,Acid etching,Photocatalytic CO2 reduction,H2 evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要