谷歌浏览器插件
订阅小程序
在清言上使用

Seasonal variation of fermentation rate inSaccharomyces spp. (Ascomycota)?

crossref(2018)

引用 0|浏览7
暂无评分
摘要
AbstractYeast species of the genusSaccharomycesshow some reaction to visible light – although they lack photo pigments and the typical clock genes of fungi – that can be explained by damage of the cytochrome electron transport chain of the mitochondria. Evidence for a circadian clock, entrainable by cyclic environmental stimuli, exists for periodic changing temperature and light as zeitgeber. Whether seasonality follows from the existence of a circadian clock – which is a necessary requirement for annual rhythms – remains unknown.Due to an accidental observation, we were able to show that fermentation taking place in complete darkness and at constant temperature is influenced in some yeast strains by the history of the inoculum culture. Using yeast cultures growing on agar plates and exposed to diffuse daylight for three weeks either in March or in May as inoculum, leads to significantly different fermentation rates in the inoculated grape juice in both months: rates are higher in March when day length is shorter than in May. In must inoculated with cultures that grew in darkness or daylight, respectively, higher fermentation rates occur by the former. Other yeast strains react to artificial white light in the same way.We used strains ofS. cerevisiae, S. eubayanus, S. kudriavzevii, S. uvarumand furthermore hybrid strains of two or even three of these species. The most pronounced reaction to daylight was shown by theS. eubayanusxS. uvarumxS. cerevisiaehybrid, followed byS. cerevisiaexS. kudriavzeviihybrids,S. eubayanusandS. cerevisiae. S. uvarumwas sensitive to artificial white light.These observations can hardly be explained by some kind of photo damage because they base on an effect that persists through many cell division cycles after yeasts were exposed to light. If it really represents seasonality epigenetic memory is likely involved, since fermentation lasts for many days and yeast generations. If the existence of a circadian clock and seasonal behaviour inSaccharomycesis confirmed these yeasts could become an important tool in basic research concerning epigenetic memory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要