谷歌浏览器插件
订阅小程序
在清言上使用

A Sturgeon Cartilage Extracellular Matrix-Derived Bioactive Bioink for Tissue Engineering Applications.

International Journal of bioprinting(2023)

引用 1|浏览27
暂无评分
摘要
Three-dimensional (3D) bioprinting provides a promising strategy for tissue and organ engineering, and extracellular matrix (ECM)-derived bioinks greatly facilitate its applications in these areas. Decellularized sturgeon cartilage ECM (dSC-ECM)-derived bioinks for cartilage tissue engineering were fabricated with methacrylate-modified dSC-ECM (dSC-ECMMA) and sericin methacrylate (SerMA), which optimizedthe mechanical properties of their solidified hydrogels.dSC-ECM induces chondrocytes to form cell clusters and subsequently reduces their proliferation, but the proliferation of encapsulated chondrocytes was normal in solidified dSC-ECM-5 bioink samples, which contain 5 mg/mL dSC-ECMMA. Hence, this bioink was selected for further investigation. Lyophilized dSC-ECM-5 hydrogels showed connected pore microstructure, which is suitable for cell migration and nutrients transportation. ThisdSC-ECM-5 bioink exhibited high fidelity and good printability by testing via a 3D bioprinting system, and the chondrocytes loaded in printed hydrogel products were viable and able to grow, following incubation, in the cell culture medium. Solidified dSC-ECM-5 and SerMA bioinks loaded with chondrocytes were subcutaneously implanted into nude mice for 4 weeks to test the suitability of the bioink for cartilage tissue engineering. Compared to the SerMA bioink, the dSC-ECM-5 bioink significantly enhanced cartilage tissue regeneration and maturation in vivo, suggesting the potential of this bioink to be applied in cartilage tissue engineering in the future.
更多
查看译文
关键词
3D bioprinting,ECM-derived bioink,Cartilage tissue engineering,Cartilage regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要