谷歌浏览器插件
订阅小程序
在清言上使用

Photoactivated Pd-Loaded WO3 for Enhanced H2 S Sensing

IEEE sensors journal(2023)

引用 3|浏览8
暂无评分
摘要
In this article, pristine WO3 and Pd-loaded WO3 are synthesized via facile hydrothermal method and integrated with the Internet of Things (IoT)-enabled portable resistance readout circuit for real-time sensing performance measurement of the fabricated sensor toward $\text{H}_{{2}}\text{S}$ . A series of characterizations are performed to investigate the crystal structure, surface morphology, active surface area, and elemental composition of the synthesized materials. Pristine WO3 nanoplates show a 9.13 sensing response toward 100-ppm $\text{H}_{{2}}\text{S}$ exposure, while loading of 0.25 and 0.5 mol% Pd further improves the response up to 14.37 and 23.45, respectively. However, further loading of Pd (1 mol%) on WO3 nanoplates reduces the sensing response to 15.29. The fabricated 0.5 mol% Pd-loaded WO3 sensor is investigated under thermal and photoenergy excitations. Moreover, the temperature optimization of 0.5 mol% Pd-loaded WO3 exhibits a higher sensing response of 47.8 at 100 °C. Furthermore, under visible and ultraviolet (UV) illumination, the 0.5 mol% Pd-loaded WO3 sensor response increases from 47.8 to 57.3 and 63. The fabricated 0.5 mol% Pd-loaded WO3 sensor exhibits remarkable response, shorter response–recovery time, and ultraselectivity toward analyte gas.
更多
查看译文
关键词
Gas sensor,hydrothermal,Pd loading,ultraviolet (UV) exposure,visible,WO3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要