谷歌浏览器插件
订阅小程序
在清言上使用

Deep Learning Prediction for Distal Aortic Remodeling After Thoracic Endovascular Aortic Repair in Stanford Type B Aortic Dissection

Min Zhou, Xiaoyuan Luo, Xia Wang, Tianchen Xie, Yonggang Wang, Zhenyu Shi, Manning Wang, Weiguo Fu

Journal of endovascular therapy(2023)

引用 0|浏览25
暂无评分
摘要
Purpose: This study aimed to develop a deep learning model for predicting distal aortic remodeling after proximal thoracic endovascular aortic repair (TEVAR) in patients with Stanford type B aortic dissection (TBAD) using computed tomography angiography (CTA). Methods: A total of 147 patients with acute or subacute TBAD who underwent proximal TEVAR at a single center were retrospectively reviewed. The boundary of aorta was manually segmented, and the point clouds of each aorta were obtained. Prediction of negative aortic remodeling or reintervention was accomplished by a convolutional neural network (CNN) and a point cloud neural network (PC-NN), respectively. The discriminatory value of the established models was mainly evaluated by the area under the receiver operating characteristic curve (AUC) in the test set. Results: The mean follow-up time was 34.0 months (range: 12-108 months). During follow-up, a total of 25 (17.0%) patients were identified as having negative aortic remodeling, and 16 (10.9%) patients received reintervention. The AUC (0.876) by PC-NN for predicting negative aortic remodeling was superior to that obtained by CNN (0.612, p=0.034) and similar to the AUC by PC-NN combined with clinical features (0.884, p=0.92). As to reintervention, the AUC by PC-NN was significantly higher than that by CNN (0.805 vs 0.579; p=0.042), and AUCs by PC-NN combined with clinical features and PC-NN alone were comparable (0.836 vs 0.805; p=0.81). Conclusion: The CTA-based deep learning algorithms may assist clinicians in automated prediction of distal aortic remodeling after TEVAR for acute or subacute TBAD. Clinical Impact: Negative aortic remodeling is the leading cause of late reintervention after proximal thoracic endovascular aortic repair (TEVAR) for Stanford type B aortic dissection (TBAD), and possesses great challenge to endovascular repair. Early recognizing high-risk patients is of supreme importance for optimizing the follow-up interval and therapy strategy. Currently, clinicians predict the prognosis of these patients based on several imaging signs, which is subjective. The computed tomography angiography-based deep learning algorithms may incorporate abundant morphological information of aorta, provide with a definite and objective output value, and finally assist clinicians in automated prediction of distal aortic remodeling after TEVAR for acute or subacute TBAD.
更多
查看译文
关键词
aortic dissection,aortic remodeling,deep learning,computed tomography angiography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要